ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT IV FRAMEWORKS

MapReduce — Hadoop, Hive, MapR — Sharding — NoSQL Databases - S3 - Hadoop
Distributed File Systems — Case Study- Preventing Private Information Inference Attacks
on Social Networks-Grand Challenge: Applying Regulatory Science and Big Data to
Improve Medical Device Innovation

MAPREDUCE

MapReduce 1s a functional programming paradigm that 1s well surted to handling
parallel processing of huge data sets distributed across a large number of computers.
MapReduce 1s the application paradigm supported by Hadoop and the infrastructure
MapReduce works in two steps:

1. Map: The map step essentially solves a small problem: Hadoop’s partitioner divides
the problem into small workable subsets and assigns those to map processes to solve.

2. Reduce: The reducer combines the results of the mapping processes and forms the
output of the MapReduce operation.

Maps specific keys to specific values. For example, if we were to count the
number of times each word appears in a book, our MapReduce application would output
each word as a key and the value as the number of times 1t is seen. Or more specifically,
the book would probably be broken up into sentences or paragraphs, and the Map step
would return each word mapped either to the number of times it appears in the sentence
(or to “17 for each occurrence of every word) and then the reducer would combine the
keys by adding their values together. Prior to submitting the job to Hadoop, we have to
first load your data into Hadoop. It would then distribute the data, in blocks, to the
various slave nodes in its cluster. Then we have to submit the job to Hadoop, it would
distribute the code to the slave nodes and have each map and reduce task process data on
that slave node. The map task would iterate over every word in the data block passed to it
(assuming a sentence in this example), and output the word as the key and the value as
“17. The reduced task would then receive all instances of values mapped to a particular
key; for example, it may have 1,000 values of “1” mapped to the word “apple”™, which
would mean that there are 1,000 apples i the text. The reduce task sums up all of the
values and outputs that as its result. Then the Hadoop job would be set up to handle all of
the output from the various reduced tasks.

An example of MapReduce

Example 1:

Assume you have five files, and each file contains two columns (a key and a value in
Hadoop terms) that represent a city and the corresponding temperature recorded in that

DS4015 - BIG DATA ANALYTICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

city for the various measurement days.In this example, city is the key and temperature is
the value.

Toronto, 20

Whitby, 25

New York, 22

Rome, 32

Toronto, 4

Rome, 33

New York, 18

Out of all the data we have collected, we want to find the maximum temperature for each
city across all of the data files (note that each file might have the same city represented
multiple times). Using the MapReduce framework, we can break this down into five map
tasks, where each mapper works on one of the five files and the mapper task goes through
the data and returns the maximum temperature for each city. For example, the results
produced from one mapper task for the data above would look like this: (Toronto, 20)
(Whitby, 25) (New York, 22) (Rome, 33)

T.et’z geamme the other four manner tazk s (worl-ine on the other four filez not chown here’)



b 4 —

produced the following intermediate results: (Toronto, 18) (Whitby, 27) (New York, 32)
(Rome, 37)(Toronto, 32) (Whitby, 20) (New York, 33) (Rome, 38) (Toronto, 22) (Whitby,
19) (New York, 20) (Rome, 31)(Toronto, 31) (Whitby, 22) (New York, 19) (Rome, 30).
All five of these output streams would be fed into the reduce tasks, which combine the
mput results and output a single value for each city, producing a final result set as
follows:
(Toronto, 32) (Whitby, 27) (New York. 33) (Rome, 38)
Example 2:
The typical mntroductory program or ‘Hello World® for Hadoop 1s a word count
program. Word count programs or functions do a few things:
1. look at a file with words in it,
2. determine what words are contained in the file and
3. count how many times each word shows up and potentially rank or sort the results.
For example, yvou could run a word count function on a 200 page book about
software programming to see how many times the word “code™ showed up and what
other words were more or less common. A word count program like this is considered to
be a simple program.
The word counting problem becomes more complex when we want it to run a
word count function on 100,000 books, 100 million web pages, or many terabytes of data

DS4015 - BIG DATA ANALYTICS
























