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4.5 Integration of Rational functions by Partial fraction

Integration of Rational functions by Partial fraction

Let f(x) = % be any rational function where P and Q are polynomials.

If deg P < deg Q, then f is proper
If deg P > deg Q, then f is improper then to make them proper divide P(x) by Q(x) by

long division until a remainder R(x) is obtained such that deg P < deg Q

P(x) R(x) .
— = — = +
Hence S Sx) + S (or) = Quotient

Where S and R are also polynomials.

Remainder
Divisor

Case (i):
The denominator is a product of distinct linear factors
Example:
1 A B
(x+a)(x+b)  (x+a) = (x+b)
Case (ii):
The denominator is a product of distinct linear factors, some of which are repeated.
Example:
1 A B c
(x+a)(x+b)2  (x+a)  (x+b) = (x+b)?
Case (iii):
The denominator contains irreducible quadratic factors, none of which is repeated.
Example:
1 __ Ax+B Cx+D
(x2+a)(x2+b)  (x2+a)  (x2+b)
Example:
(x2+1)
Evaluate [ "5 T
Solution:
(x%+1) . (x?+1)
(x2-1)(2x+1)  (x—1)(x+1)(2x+1)
A B Cc

T - T arD) T 2xtD)
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x4+ 1) =Ax+1D2x+1D+Bx-1DRx+1)+C(x—-1)(x+1)

Putx = 1, we get Putx = —1, we get Put x = 0, we get
2 =A2)03) 2 = B(-2)(-1) 1=A-B-C
A=2 B =1 1=1-1-¢

3 3

C=-2+-=—

3 3

(x%2+1) _11+1_§1
(x2-1)(2x+1) 3 x-1 x+1 3 2x+1
I G VI — 1 _u@ON ¥ n S 1
f(xz—l)(2x+1) dx = 3fx—1 dx + fx+1 dx 3f2x+1 dx

= glog(x —1) +log(x + 1) —gw+ C

< glog(x — 1) +log(x+1)— %log(Zx +1)+ C

Example:
242x-1
Evaluate [ ————
2x3+3x%-2x
Solution:
x2+2x-1 _ x%42x-1 A B c

2x343x2-2x  x (2x—-1)(x+2)  x  2x—1  x+2

x2+2x—1=AQx—1)(x+2)+Bx (x+2)+Cx (2x—1)

Put x = 0, we get Putx = % we pet Put x = —2, we get
1 1 5
1 =A42 Z+1—1=B(5)(5) 4-4 — 1 = C(2Q)(=5)
4 =1 1= - 1=10C
2 4 4
1 -1
B_E C‘E

x24+2x-1 1/1 1 1 1 1
= —"=" - = Z(=)4+= S
2x3+3x2-2x 2 \x 5 \2x-1 10 \x+2
x2+2x—1 1 1 1 1 1 1
[ dp(2) gyl () ax— L (L) ax
2x3+43x2-2x 2 X 5 2x—1 10 x+2

_1 llog(Zx—l) 1
= logx + - ——— 1010g(x+2)+C

2x-1
x+2

=%logx+1—10log( )+C

MA3151-MATRICES AND CALCULUS



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Example:
X
Evaluate fm dx
Solution:
x? _ A B C D
(x-1)3(x-2) x-2  x-1 (x-12  (x—1)3

x2=Ax—-1)3+B(x—1)?(x—2)+ C(x—1D(x—2)+ D (x — 2)

Put x = 2, Equating the coeffs of x3 Put x = 1, we get Put x=0, we
get
On both sides 1 =D(-1) 0 =-A-2B+
2C - 2D
We get 4 = A 0=A+B D = -1 2C = A+ 2B+
2D
B = -4 = 4-8-2
C=-3
N x? ORI
(x—1)3(x-2) x—-2 x-1 (x-1)2 (x-1)3
[ = fm dx

=4 fx—iz dx — 4 fﬁ dx —3 f(x_ll)z dx — f(x_1)3 dx

=4log(x —2) —4log(x—1)+ 3 (xil) + z(xi1)2 +C

=410g((5) +35 + e + €
Example:

Evaluate [ — (;_1) dx
Solution:
Let] = [ o dx
1 A B C
m= ;+x—2+ =D (1)
1=Ax(x—1)+B(x — 1) + Cx?
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Putx = 0, Put x = 1, we get Equating the Coefficients of x2on
both side We get 1 =-B 1 =C 0 =A4+C>
A=—-C
B= -1 A= -1
1 -1 1 1
(1) x2(x-1) X x2? (x-1)

I=f2(x1)dx——f dx—f dx+f—dx

=—logx+i+log(x—1)+C log( )+ +C

Example:
10
Evaluate fmdx
Solution:
10
Let/ = (x—1)(x2+9)

10 A i Bx +C y
(x—1Dx2+9) x—1 x2+49 - (1)
10=A4Ax*+9)+ (Bx+C)(x—1)

Putx =1, Weget Equating the Coefficients of x2 Equating the Coefficients
of X, We get
10=104 0 =A+B =>B=-A 0=—B+C >-B =—-C
A=1 B= -1 Cc= -1
10 1 -x-1 1 x+1
(1) = (x—1)(x24+9)  x—-1 T X249 x-1 (x2+9)

1 1
N f;dx—f X249 dx—fx2+9dx

=log(x — 1) — E log(x*+9) — gtan‘1 (g) +C

Example:
xr—2x%2+4x+1
Evaluate dx
f x3—x2—x+1
Solution:
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x*—2x%+4x+1

Let[ =
x3-x2-x+1

x+1

x3—x?—x+1 | x*—0x3-2x%2+4x+1

x*— x3—x%+ x

x3—x?+4+3x+1

x3—x?—-x+1

4x
x*—2x%+4x+1 4x+1
i i a P VN I L S S
x3-x2—-x+1 x3=x2=x+1
4x+1
=x+1+

(x—1)2(x+1)

[x3—x?2—x+1=(—1)>2(x+1)]
4x A B c
(x—1)2(x+1)  x-1 (x=1)2  (x+1)

>4x=Ax+1D(x+1)+ B(x+1)+ C(x + 1)?

Putx =1, We get Putx = —1 , We get Equating the Coefficient of

both sides , we get

4=2B —4 =4C 0=A+C=>A= —C
B=2 C= -1 A=1
x*—2x2+4x+1 1 2 1

x3—x2—x+1

=(x+D+ x—1 b (x—1)2 B (x+1)

I=f(x+1)dx+fx—i1dx+f = dx— [—— dx

(x—1)2 (x+1)

= x?z+ x +log(x —1) — ﬁ—log(x+1)+ C

= x?z+ X — ﬁ+log(x_1)+ C

x+1

Improper Integrals

The Integral I:fabf(x)dx is said to be proper or definite only when the limits

a and b are finite and the integrand f(x) is continuous in the interval [a, b]
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Types of Improper Integrals
There are two types of improper integrals
1. With infinite limits of integration
2. The integrand is discontinuous.

Type I (Infinite limits of integration )
L f,; fG)dx = lim [/ f(x)dx
2. [, fGOdx = lim [ f(x)dx

3. [0 fdx = [° fG)dx+ [ f(x)dx,'a is areal number.
Provided both the limits on right side exist.
Type Il (Discontinuous of the integrand)

1. If f is discontinuous at b, then

b t
faf(x)dx = tl_i}lgl_jaf(x)dx

2. If f is discontinuous at a, then

b b
f f(x)dx = tl_i)rgfL f(x)dx

a
3. If fis discontinuous at c, in [a, b] then

fbf(x)dx = fcf(x)dx + jbf(x)dx

= tlircrl_ fatf(x)dx + tl_i)rcrgr .ftbf(x)dx
Provided both the integral’s on right exists.
Note:
The improper integral is said to be convergent if the limit exists and is divergent if
the limit does not exist.

Example:
Determine whether the integral [ 1°° % dx is convergent or divergent.
Solution:

The given integral is flooidx
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an improper integral , since upper limit of integration is infinite then,

f dx—hmf —dx

t—oo

= lim[logx]}

t—oo

= 1}im[logt —log1]

= lim[logt — 0] = oo

t—>oo

The given integral is divergent and it diverges to co.

Example:

Determine whether the integral f

Solution:

since upper limit of

The given integral is f

integration is infinite then,

fo 1+X2 t—>oo

= lim [tan bt

t—>o0

= lim[tan™1t — tan™10]

t—>oo

=lim tan~1t

t—oo

-1

" s
= tan” "o = =
2

The given integral is convergent.

Example:
For what values of p the integral f1°° xipdx convergent?
Solution:
- — p
prilllmflxpdx—th_)rglofx dx
—p+1qt
= lim |* ]
t-oo L—p+1 1
-p+1
= lim |* - ]
t—oo L—p+1 -p+1
. 1 1
= lim - [1- 5
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,0 > 1, converges

=1
0, p < 1,diverges
Example:
Evaluate [, logx dx
Solution:
Takel = [ lofx dx
Put u =logx dv=§dx du = idx v = logx

I= flofx dx = (logx)? — [ logx G) dx

I =(logx)>—1= 21 =(logx)>*=>1= %(logx)2

®logx tlogx 1 §
i 1

X t—oo 1 X t—oo

= li : [ = log1)?
= lim | (tlogt)? - 5 (tog) ]
L 2

= tllm [E (logt) ] =o  [logl =0,logoo = oo]
The given integral is divergent.
Example:

Evaluate [* xe ™ dx

Solution:

Consider [ xe™"dx

Put u= x? du = 2xdx
[xe™™"dx = fe‘“ [—]
1 - _— — —
=—ce'= 2e ** ()

= xe ™ dx = f_ooo xe ™ dx + fooo xe " dx...(2)

Takef xe *dx = lim f xe X dx = lim —e‘x] by (1)

t—>—oo t-o—

_ 1 [—1+1 _tz]_—l
Tl 2 T2° | T
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Takef xe ™ dx = llmf xe ™ dx = hm —e ] by (1)

= lim _—e‘t2+—]=—
2 2l T2

t—ooo
. © ,-x?g. _ Z1, 1 _
~(2)= [ xe ™ dx = ~+-=0
Example:

Evaluate [, m dx

Solution:

. 1
Con5|derf(x_2 s-dx..(1)

Putu=x—-2 =du=dx

VR /(ML W SN A ok
( ) f(x—2)3/2 X = fu3/2 u= fu u = —3/2+1 T\ —1/2
—2 A /4
Vu 0 NG,
[0 —dx= llm[ft dx] —lim[_2 t
3 (x— 2)/ tooo |¥3 (x— 2) - t-oo LVx—-215
. -2 -2
=1l [(5) - (F)]
= tlirglo(m)+2—0+2—2(f|nlte)
The given integral f —)dx IS convergent.
Example:

Evaluate f —dx

Solution:
Here, infinite discontinuity occurs at x=0

2 1 2 _1
j —dx = llm x 72dx
0o VX t-0" J;
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= lim [2v2 — 2 Vt]
t—07*

= 2v2 (finite)

The given integral f —dx is convergent.

Example:

Evaluate [> — dx
0 x-1

Solution:

Here, infinite discontinuity occursat x = 1

j Lo [ o[ Loa
"Ox—l s o Xx—1 . el *

fo —dx = hm 1 [log(x — 1)]§

1 dx _
t—>1‘

Take [ —
= tlg}l_ log(t —1) = —o0
[}—=— dx is divergent.
0 x-1
= ffi dx is also divergent.
. S 3 |l bl
The given integral | — dx isdivergent

Example:

Evaluate f \/_ dx

Solution:

The infinite discontinuity occurs at x = 2

s ] G|
dx = lim dx
-[2 XxX—2 t—>2% 2 Vx —2

= Jim [2vx=2];
= lim, (2V3-2./t=2)
= 2v3 (finite)
The given integral f dx IS convergent.
Example:
Evaluatef ———dx

0 (x-1)3
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Solution:

Here infinite discontinuity occursat x = 1

3 1 11 3 1
D J, A dx = [ P 2/3dx+f1 ——dx ...(])

(x-1)°/3

1 1
Take f() (x—1)2/3 dx tllrln‘ fo (x-1) ’/3 A

Shm 36— 0],
= lim [3¢ - 15 + 3]
=3

3 1 t 1
Take | N dx = tll}rg ¢ oo dx

= lim, [36c- ']

=hm[ﬂf@_(p—n%”

t—17t

— 3 (21/3)

(D:f( dx—3+3(VQ

=3[1+fh]
Comparison test for improper integrals
Let fff(x)dx be an improper integral.
i) If there existsa g(x) such that |f(x)| < g(x) forall x in[a, b] and f(f g(x)dx
converges then f: f(x)dx also converges.
i) If there exists function g(x) such that f(x) = |g(x)| for all x in [a, b] and

f: g(x)dx diverges then ff f(x)dx also diverges.

Limit form of comparison Tests.

fx)

s = kwherek #0

Let f(x) > 0 and g(x) > Oand hm

Then, the improper integrals fa f(x)dx and fa g(x)dx converge or diverge together.

If k = 0, only the convergence of [~ g(x)dx implies that of [~ f (x)dx
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Absolute Convergence
The improper integral f;’ f(x)dx is said to be absolutely convergent if f:lf(x)ldx
IS convergent.
Note:
1) The same definition holds for [ ” £ (x)dx also
2) When the improper integral changes sign within the limits of the integration, then

the above test is applied.

Example:
oo -1
Discuss the convergence of [,” “=—- dx
4+x3
Solution:
xtan™1x tan~1x 1
Let f(x) = e s and gkx) = =
) ASA IAtana iy

lim —— = lim ——
x=00 g(x) x>0 1 4 4x3

P | A
2
Hence, by comparision test 2, the integrals floof(x)dx and floog(x)dx converge or
diverge together, Now | 1°° g(x)dx is divergent.

w7 f(x)dx is also divergent.

Example :
Discuss the convergence of [;” =5 dx
Solution:
0o sinx o |sinx oo dx
|f1 = dx|£ Lo alax < 0=
= convergent
00 Ssinx .
) L o dx is absolutely convergent and hence convergent.
Example:

Test the convergence of f0°° e dx

Solution:
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The given integral f0°° e™*" dxis an improper integral of first kind and the integral

can be writtenas [ e~ dx = [e ™ dx+ ["e™* dx
The first integral in the right hand side f01 e~ dx is proper integral. So it is enough to

check the second one.

We have that,

Hence by comparison test the given integral is convergent.
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