

POHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

AUTONOMOUS INSTITUTION

Approved by AICTE & Affiliated to Anna University
NBA Accredited for BE (ECE, EEE, MECH) | Accredited by NAAC with A+ Grade

Anjugramam - Kanyakumari Main Road, Palkulam, Variyoor P.O. - 629 401, Kanyakumari District.

DEPARTMENT OF BIOMEDICAL ENGINEERING

VII Semester

OBT357 BIOTECHNOLOGY IN HEALTH CARE

UNIT-3 VACCINOLOGY

3.4 Adjuvants

- ❖ Adjuvants are substances added to vaccines or medications to enhance the body's immune response or improve drug effectiveness.
- ❖ In vaccines, they boost the immune system's reaction to antigens, leading to stronger and longer-lasting immunity.
- Common vaccine adjuvants include aluminum salts (alum), oil-in-water emulsions (like MF59), and toll-like receptor agonists (e.g., CpG oligonucleotides). They work by stimulating innate immunity, increasing antigen presentation, or promoting inflammation at the injection site.
- ❖ In other medical contexts, adjuvants may refer to **drugs or therapies** that enhance the effect of **primary treatments**, like chemotherapy adjuvants in cancer care. For example, levamisole or 5-fluorouracil are used as adjuvants in colon cancer to improve outcomes post-surgery.

Types of Adjuvants:

Adjuvants are diverse in their composition and function, tailored to specific medical needs. In vaccines, some of the most commonly used adjuvants include:

 Aluminum Salts (Alum): Aluminum-based adjuvants, such as aluminum hydroxide and aluminum phosphate, have been used for decades in vaccines like those for hepatitis B and diphtheria-tetanus-pertussis (DTP). Alum forms a depot at the injection site, slowly releasing antigens to prolong immune exposure and enhance antibody production.

- 2. **Oil-in-Water Emulsions**: Emulsions like MF59 and AS03 are used in influenza vaccines. These adjuvants create a robust immune response by enhancing antigen uptake by dendritic cells and stimulating local inflammation.
- Toll-Like Receptor Agonists: Molecules like CpG oligonucleotides target
 TLRs to activate innate immunity. These adjuvants are particularly effective in
 vaccines against viral infections and cancers, as they promote strong T-cell
 responses.
- 4. **Saponins**: Derived from plants, saponin-based adjuvants like QS-21 are used in vaccines for diseases such as malaria and shingles. They enhance both humoral (antibody-mediated) and cellular immunity.

Applications of Adjuvants:

1. Enhancement of Immune Response

- Increase the magnitude of antibody and T-cell responses.
- Help in achieving long-lasting immunity with smaller doses of antigen.

2. Dose-Sparing Effect

Reduce the amount of antigen required in vaccines, making them more cost-effective and widely available.

3. Improved Vaccine Efficacy

❖ Boost the effectiveness of vaccines against weakly immunogenic antigens (e.g., purified proteins, subunit vaccines, peptide vaccines).

4. Induction of Specific Immunity

- Tailor immune response:
 - ✓ Th1 response (cell-mediated immunity) important for intracellular infections (e.g., tuberculosis, malaria).
 - ✓ Th2 response (humoral/antibody immunity) for extracellular pathogens.

5. Stimulation of Mucosal Immunity

Some adjuvants help generate mucosal immunity (IgA production), useful for respiratory and gastrointestinal infections.

6. Overcoming Immune Senescence

❖ Improve vaccine responses in the elderly or immunocompromised, where natural immune response is weaker.

7. Cancer Immunotherapy

Used in therapeutic vaccines to enhance immune recognition and destruction of tumor cells.

8. Development of Novel Vaccines

Enable use of recombinant DNA, synthetic peptides, and mRNA-based vaccines by enhancing their immunogenicity.

9. Broadening Antigen Recognition

Induce cross-protection against multiple strains or variants of a pathogen.

10. Research Applications

Studying immune mechanisms, adjuvants help researchers understand antigen presentation, cytokine release, and T/B-cell activation.

Challenges of Adjuvants:

1. Safety Concerns

- ❖ Risk of local reactions (pain, redness, swelling) or systemic effects (fever, malaise).
- Potential for excessive immune activation causing autoimmunity or hypersensitivity.

2. Toxicity and Tolerability

- Some adjuvants may be too toxic for human use (though effective in animals).
- ❖ Narrow margin between effective dose and harmful dose.

3. Regulatory Hurdles

- Very few adjuvants are licensed for human vaccines (e.g., alum, MF59, AS04).
- Strict safety testing and long approval timelines limit introduction of new adjuvants.

4. Variability of Immune Response

- Different populations (children, elderly, immunocompromised) may respond differently.
- Genetic and ethnic variations can influence effectiveness.

5. Stability Issues

Some adjuvants are unstable in storage or require special handling (temperature, formulation).

6. Compatibility with Antigens

- ❖ Not all adjuvants work with all types of antigens (proteins, peptides, polysaccharides, mRNA).
- Risk of antigen denaturation or reduced efficacy when combined.

7. Incomplete Understanding of Mechanism

- Many adjuvants act through complex pathways (e.g., TLR activation, inflammasome stimulation) that are not fully understood.
- Makes rational design of new adjuvants difficult.

8. Manufacturing Challenges

Large-scale production and quality control of adjuvants can be technically demanding and costly.

9. Public Perception and Acceptance

- ❖ Fear of "toxic additives" in vaccines can reduce vaccine uptake.
- Misinformation can amplify safety concerns.
