CCS342 | DEVOPS

4.8 ANSIBLE ROLES

Roles provide a framework for fully independent, or interdependent collections of

variables, tasks, files, templates, and modules.

In Ansible, the role is the primary mechanism for breaking a playbook into multiple files. This
simplifies writing complex playbooks, and it makes them easier to reuse. The breaking of playbook

allows you to logically break the playbook into reusable components.

Each role is basically limited to a particular functionality or desired output, with all the
necessary steps to provide that result either within that role itself or in other roles listed as

dependencies.

Roles are not playbooks. Roles are small functionality which can be independently used
but have to be used within playbooks. There is no way to directly execute a role. Roles have no

explicit setting for which host the role will apply to.

Top-level playbooks are the bridge holding the hosts from your inventory file to roles that
should be applied to those hosts.

Creating a New Role
The directory structure for roles is essential to create a new role.
Role Structure

Roles have a structured layout on the file system. The default structure can be changed but for now

let us stick to defaults.

Each role is a directory tree in itself. The role name is the directory name within the /roles directory.
$ ansible-galaxy -h

Usage

ansible-galaxy [delete[import|infolinit|install|list|loginjremove|search|setup] [--help] [options] ...

Options

-h, --help — Show this help message and exit.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS342 | DEVOPS

-v, --verbose — Verbose mode (-vvv for more, -vvvv to enable connection debugging)
--version — Show program'’s version number and exit.
Creating a Role Directory
The above command has created the role directories.
$ ansible-galaxy init vivekrole
ERROR! The API server (https://galaxy.ansible.com/api/) is not responding, please try again later.
$ ansible-galaxy init --force --offline vivekrole
- vivekrole was created successfully
$ tree vivekrole/
vivekrole/
defaults
main.yml
files handlers
main.yml
meta
main.yml
README.md tasks
main.yml

templates tests inventory
test.yml
vars

main.yml

8 directories, 8 files

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS342 | DEVOPS

Not all the directories will be used in the example and we will show the use of some of them in

the example.
Utilizing Roles in Playbook

This is the code of the playbook we have written for demo purpose. This code is of the
playbook vivek_orchestrate.yml. We have defined the hosts: tomcat-node and called the two roles

install-tomcat and start-tomcat.

The problem statement is that we have a war which we need to deploy on a machine via Ansible.

- hosts: tomcat-node
roles:
- {role: install-tomcat}
- {role: start-tomcat}

Contents of our directory structure from where we are running the playbook.

Mame Size (KB} Last modified
rales 2017-11-02 1
U ansible.cfg 1 2017-11-02 1
o hosts 1 2017-11-02 1
| wivek_orchestrate.retry 1 2017-11-08 3
& vivek_orchestrate.yml 1 2017-11-02 1

$1Is
ansible.cfg hosts roles vivek_orchestrate.retry vivek_orchestrate.yml
Marme Size (KB) Last modified
nstal-omcat 2017-11-02 1...
start-tomcat 2017-11-02 1...

There is a tasks directory under each directory and it contains a main.yml. The main.yml contents

of install-tomcat are —

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

#lInstall vivek artifacts
block:
- name: Install Tomcat artifacts
action: >
yum name = "demo-tomcat-1" state = present

register: Output

always:
- debug:
msg:
- "Install Tomcat artifacts task ended with message: {{Output}}"
- "Installed Tomcat artifacts - {{Output.changed}}"

The contents of main.yml of the start tomcat are —

#Start Tomcat
block:
- name: Start Tomcat
command: <path of tomcat>/bin/startup.sh™
register: output

become: true

always:
- debug:
msg:
- "Start Tomcat task ended with message: {{output}}"
- "Tomcat started - {{output.changed}}"

CCS342 | DEVOPS

The advantage of breaking the playbook into roles is that anyone who wants to use the

Install tomcat feature can call the Install Tomcat role.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS342 | DEVOPS

Breaking a Playbook into a Role

If not for the roles, the content of the main.yml of the respective role can be copied in the

playbook yml file. But to have modularity, roles were created.

Any logical entity which can be reused as a reusable function, that entity can be moved to

role. The example for this is shown above

Ran the command to run the playbook.

-vvv option for verbose output verbose output
$ cd vivek-playbook/

This is the command to run the playbook

$ sudo ansible-playbook -i hosts vivek_orchestrate.yml vvv

4.9 ADHOC COMMANDS IN ANSIBLE

Ansible ad hoc commands are single-line commands executed directly from the command
line on the Ansible control node to perform quick, one-time tasks on one or more managed nodes.
Unlike playbooks, which are designed for complex, reusable automation, ad hoc commands are

ideal for immediate, specific actions.

Ad hoc commands are commands which can be run individually to perform quick
functions. These commands need not be performed later.

For example, you have to reboot all your company servers. For this, you will run the Adhoc

commands from /usr/bin/ansible.

These ad-hoc commands are not used for configuration management and deployment,

because these commands are of one-time usage.

» ansible-playbook is used for configuration management and deployment.

Structure of an Ad Hoc Command:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS342 | DEVOPS

ansible [pattern] -m [module] -a “[module options]”

» ansible: The command-line tool used to execute ad hoc commands.

» [pattern]: Specifies the target hosts or groups from your inventory to run the command on
(e.g., all, webservers, hostl).

» -m [module]: Specifies the Ansible module to use (e.g., ping, shell, apt, service).

» -a"[module options]": Provides arguments or parameters to the chosen module.

Common Use Cases and Examples:
Q) Checking Connectivity (Ping).
ansible all -m ping
(i) Executing Shell Commands.
ansible webservers -a "uptime"
ansible databases -m shell -a "df -h /var/lib/mysql"
(i) Managing Services.
ansible appservers -m service -a "name=nginx state=started"
ansible all -m service -a "name=httpd state=restarted"
(iv) installing packages.
ansible webservers -m apt -a "name=apache2 state=present"
(V) copying files.

ansible backupservers -m copy -a "src=/tmp/config.txt dest=/etc/config.txt owner=root

group=root mode=0644"
(vi) rebooting servers.
ansible all -m reboot

Key Characteristics:

e Quick and Simple:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS342 | DEVOPS

Designed for rapid execution of individual tasks.
« Non-reusable:

Not intended for complex, repeatable automation as they lack the structure and features of
playbooks.

« ldempotent (where applicable):

Many Ansible modules used in ad hoc commands are idempotent, meaning they check the current
state before making changes, ensuring the desired state is achieved without unnecessary
operations.

« Demonstrates Ansible Power:
Provides a straightforward way to understand Ansible's capabilities and module functionality

before delving into playbooks.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

