ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT II COMPILE AND BUILD USING MAVEN & GRADLE 6

Introduction, Installation of Maven, POM files, Maven Build lifecycle, Build
phases(compile build, test, package) Maven Profiles, Maven repositories(local, central,
global),Maven plugins, Maven create and build Artifacts, Dependency management,

Installation of Gradle, Understand build using Gradle

MAVEN PROFILES
A Maven profile is a customizable set of configuration parameters within a Maven
Project Object Model (POM) file that allows for the modification of build behavior based
on specific environments or conditions. It provides a mechanism to tailor the build
process for different scenarios, such as development, testing, or production environments,
without requiring changes to the core POM file or maintaining multiple project
configurations.
Key aspects of Maven profiles:
Customization: Profiles enable overriding or extending default Maven build settings,
including dependencies, plugins, plugin configurations, properties, and build directories.
Environment-specific builds: They facilitate creating distinct builds optimized for
different environments, such as using different database configurations for development
versus production, or employing specific testing frameworks for integration tests.
Activation: Profiles can be activated explicitly via command-line flags (e.g., mvn -P
profile-id), or automatically based on various conditions like operating system, JDK
version, presence of specific files, or system properties.
Portability: By centralizing environment-specific configurations within profiles, Maven
aims to maintain project portability and reduce inconsistencies across different developer
machines or build servers.
Location: Profiles are typically defined within the <profiles> section of the pom.xml file,
but can also be defined in the settings.xml file for user-specific or global configurations.
Profiles are specified using a subset of the elements available in the POM itself

(plus one extra section), and are triggered in any of a variety of ways. They modify the

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

POM at build time, and are meant to be used in complementary sets to give
equivalent-but-different parameters for a set of target environments. Profiles can easily
lead to differing build results from different members of the team.
Different types of profile:
e Per Project
- Defined in the POM itself (pom.xml).
e Per User
- Defined in the Maven-settings (%USER_HOME%/.m2/settings.xml).
e (Global
- Defined in the global Maven-settings ($ {maven.home}/conf/settings.xml).
Profile Inheritance
The profiles are not inherited as other POM elements by child POMs. They are resolved
very early by the Maven Model Builder and only the effects of active profiles are
inherited.
Elements of profile
A profile in Maven is defined within the <profiles> element in the pom.xml or
settings.xml file, and it contains several key elements:
1. <id>:
This is a mandatory element that provides a unique identifier for the profile. This ID
is used to activate the profile, either explicitly via the command line (e.g., mvn
-P<profile id>) or through other activation mechanisms.
2. <activation>:
This element defines the conditions under which a profile will be automatically
activated. Activation can be based on various factors, including:
o <activeByDefault>: If set to true, the profile will be active unless another profile
is explicitly activated.
e <jdk>: Activates the profile based on the Java Development Kit (JDK) version.
e <os>: Activates the profile based on the operating system name, family, arch, or

version.

CCS342 - DEVOPS

https://maven.apache.org/ref/current/maven-settings/settings.html
https://maven.apache.org/ref/current/maven-settings/settings.html
https://maven.apache.org/ref/current/maven-model-builder/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

e <property>: Activates the profile if a specific system property is present or has a
particular value.
o <file>: Activates the profile based on the existence or non-existence of a file.
. <properties>:
This element allows the definition of profile-specific properties as key-value pairs.
These properties can be used to override or define configuration values that are
specific to the activated profile, such as database URLs, API keys, or

environment-specific settings.

. <build>:

A profile can contain a <build> element to modify the build process itself. Within
this, you can configure elements such as:
o <plugins>: Define or modify the configuration of Maven plugins, including their
goals and executions.
e <resources> and <testResources>: Specify different resource directories for the
main source and test source.
o <finalName>: Override the final name of the project's artifact.
. <repositories> and <pluginRepositories>:
These elements allow the specification of remote repositories for dependencies
and plugins, respectively, that are specific to the profile.
. <dependencies> and <dependencyManagement>:
Profiles can define or modify project dependencies, including their versions and

scopes, and also influence dependency management settings.

. <modules>:

If the project is a multi-module project, a profile can define which modules should be
included in the build for that specific profile.
. <reporting>:

This element allows customization of reporting configurations within a profile.

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

9. <distributionManagement>:
Profiles can override distribution management settings, which define where the

project's artifacts are deployed (e.g., to a staging server in a "staging" profile).

Profile Activation:
A profile can be activated in several ways:
e Explicitly
e Implicitly
o Based on OS
o Based on system properties
o Based on presence of files
Explicit profile activation
Profiles can be explicitly specified using the -P command line flag. This flag is
followed by a comma-delimited list of profile IDs to use. The profile(s) specified in the
option are activated in addition to any profiles which are activated by their activation
configuration or the <activeProfiles> section in settings.xml. To make the profile
optional, the profile identifier is prefixed with an ?.
mvn groupld:artifactld:goal -P profile-1,profile-2,?profile-3
Profiles can be activated in the Maven settings, via the <activeProfiles> section.
This section takes a list of <activeProfile> elements, each containing a profile-id inside.

<settings>
<activeProfiles>
<activeProfile>profile-1</activeProfile>

</activeProfiles>

</settings>

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Profiles listed in the <activeProfiles> tag would be activated by default every time

a project use it. Profiles can also be active by default using a configuration like the
following in a POM:
<profiles>
<profile>

<id>profile-1</id>

<activation>

<activeByDefault>true</activeByDefault>

</activation>

</profile>
</profiles>
This profile will automatically be active for all builds. All profiles that are active by
default are automatically deactivated when a profile in the POM is activated on the
command line or through its activation config.
Implicit profile activation

Profiles can be automatically triggered based on the detected state of the build
environment. These triggers are specified via an <activation> section in the profile itself.
Currently, this detection is limited to JDK version matching, operating system matching
or the presence/the value of a system property. The implicit profile activation always only
refers to the container profile
JDK:
The following configuration will trigger the profile when the JDK's version starts with
"1.4" (eg. "1.4.0 08", "1.4.2 07", "1.4"), in particular it won't be active for newer
versions like "1.8" or "11":
<profiles>
<profile>

<activation>

<jdk>1.4</jdk>

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

</activation>

</profile>
</profiles>
Ranges can also be used. Range values must start with either [or (. Otherwise, the value
is interpreted as a prefix. The following honours versions 1.3, 1.4 and 1.5.
<profiles>
<profile>

<activation>

<jdk>[1.3,1.6)</jdk>

</activation>

</profile>
</profiles>
oS
This next one will activate based on the detected operating system.
<profiles>
<profile>
<activation>
<os>
<name>Windows XP</name>
<family>Windows</family>
<arch>x86</arch>
<version>5.1.2600</version>
</os>

</activation>

</profile>

</profiles>

CCS342 - DEVOPS

https://maven.apache.org/enforcer/enforcer-rules/versionRanges.html

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

The values are interpreted as Strings and are matched against the Java System

properties os.name, os.arch, os.version and the family being derived from those.
Each value can be prefixed with ! to negate the matching.
Files
This example will trigger the profile when the generated file is missing.
<profiles>
<profile>

<activation>

<file>

<missing>target/generated-sources/axistools/wsdl2java/org/apache/maven</missing>
</file>

</activation>

</profile>
</profiles>
The tags <exists> and <missing> can be interpolated. Supported variables are system
properties like $ {user.home} and environment variables like $ {env.HOME}. Please note
that properties and values defined in the POM itself are not available for interpolation
here, e.g. the above example activator cannot use ${project.build.directory} but needs to

hard-code the path target.

CCS342 - DEVOPS

https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html
https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

